• <option id="4mqmm"></option>
    <td id="4mqmm"><option id="4mqmm"></option></td>
  • 華西醫學期刊出版社
    作者
    • 標題
    • 作者
    • 關鍵詞
    • 摘要
    高級搜索
    高級搜索

    搜索

    找到 作者 包含"潘志康" 1條結果
    • 基于核主成分分析的流式細胞數據分群方法研究

      針對多參數流式細胞數據分析過程復雜、自動化程度不高、要求操作者具有一定專業背景等問題,本文提出了一種基于核主成分分析算法(KPCA)進行多參數流式細胞數據分群的方法。利用 KPCA 對多參數流式細胞數據進行非線性變換,降低數據的維度,得到主成分特征變量下的散點圖分群結果,并使用改進的K-means 聚類算法實現不同亞群的自動設門。以人體外周血淋巴細胞樣本檢測結果為實驗數據,分別對其進行傳統分群、主成分分析(PCA)分群、KPCA 分群處理,并對特征參數的選取進行了探索。結果表明,KPCA 方法能夠較好地應用于多參數流式細胞數據分析中,與傳統細胞分群方法相比,該方法無需操作者具備專業知識,即可實現快速準確的自動分群,能夠提高流式細胞儀臨床診斷分析的效率。

      發表時間:2017-04-01 08:56 導出 下載 收藏 掃碼
    共1頁 上一頁 1 下一頁

    Format

    Content

    毛片