• <option id="4mqmm"></option>
    <td id="4mqmm"><option id="4mqmm"></option></td>
  • 華西醫學期刊出版社
    作者
    • 標題
    • 作者
    • 關鍵詞
    • 摘要
    高級搜索
    高級搜索

    搜索

    找到 作者 包含"任和" 1條結果
    • 基于深度收縮自編碼網絡的飛行員疲勞狀態識別

      針對飛行員疲勞狀態識別的復雜性,本文基于腦電信號提出一種新的深度學習模型。一方面,利用小波包變換對飛行員腦電信號進行多尺度分解,提取了腦電信號的四個節律波段:δ 波(0.4~3 Hz)、θ 波(4~7 Hz)、α 波(8~13 Hz)和 β 波(14~30 Hz),將重組的波段信號作為純凈的腦電信號。另一方面,提出一種基于深度收縮自編碼網絡的飛行員疲勞狀態識別模型,并與其他方法進行比較。實驗結果顯示,針對飛行員疲勞狀態識別問題,所建立的新的深度學習模型具有很好的識別效果,識別準確率高達 91.67%。因此,研究基于深度收縮自編碼網絡的飛行員疲勞狀態識別具有重要意義。

      發表時間:2018-08-23 03:47 導出 下載 收藏 掃碼
    共1頁 上一頁 1 下一頁

    Format

    Content

    毛片